NEW METHOD FOR THE SYNTHESIS OF 6-AMINO-4-ARYL-3,5-DICYANO-3,4-DIHYDROPYRIDINE-2(1H)-THIONES BY RECYCLIZATION OF 4-ARYL-2,6-DIAMINO-4H-THIOPYRANES

V. D. Dyachenko, S. G. Krivokolysko, Yu. A. Sharanin,* and V. P. Litvinov

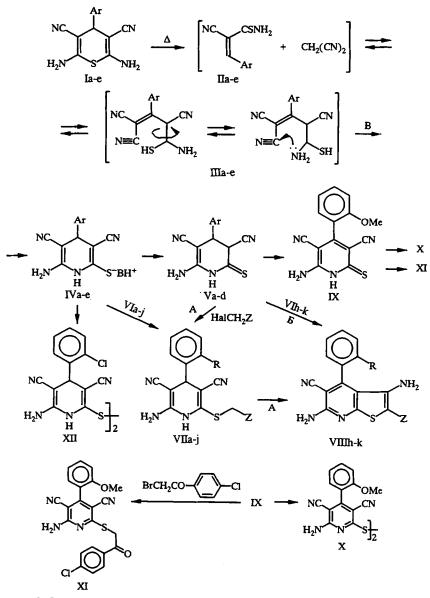
Ammonium 6-amino-4-aryl-3,5-dicyano-1,4-dihydropyridine-2-thiolates were synthesized by recyclization of 4aryl-2,6-diamino-3,5-dicyano-4H-thiopyranes in the presence of organic bases. On acidification of the products, the corresponding substituted 3,4-dihydropyridine-2(1H)-thiones were obtained which were used in the synthesis of 2-alkylthio-1,4-dihydropyridines, bis-(pyridyl-2)disulfides and thieno[2,3-b]pyridines.

We previously reported the synthesis of 6-amino-4-aryl-3,5-dicyano-3,4-dihydropyridine-2(1H)-thiones by the interaction of arylmethylenecyanothioacetamides with cyanothioacetamides [1]. In a continuation of this study we have developed a new method for synthesis of these compounds based on recyclization of 4-aryl-2,6-diamino-3,5-dicyano-4H-thiopyranes (Ia-e).

We have shown previously [2, 3] that when the thiopyranes Ia-e are heated they undergo cyclo-elimination to give arylmethylenecyanothioacetamides (IIa-e) and malononitrile, which subsequently react to produce the Michael adducts (IIIa-e). Further intramolecular cyclization of adducts IIIa-e under the influence of base gave substituted 1,4-dihydropyridine-2-thiolates (IVa-e). Treatment of the thiolates IVa-d with 10% aqueous hydrochloric acid gave 6-amino-4-aryl-3,5-dicyano-3,4-dihydropyridine-2(1H)-thiones (Va-d).

Chemical reactions and spectroscopic characteristics confirmed the structures of compounds IVa-e and Va-d. Thus, the thiones Va and Vc reacted with alkyl halides (VIa-e) in basic media to give the sulfides (VIId-h) (method A), which were analogously prepared from the salts IVa,c and e and the halides VIa-h (method B). Compounds VIIh-j underwent the Thorpe-Ziegler reaction to give thieno[2,3-b]pyridines (VIIh-j) (method A), which were also synthesized in one stage from thione Vc and alkyl halides VIe and i (method B). It is interesting that cyclization of the sulfides VII to the derivatives VIII under the influence of aqueous KOH is accompanied by their dehydrogenation.

Com- pound	Molecular formula		(Foun (Calcula	M.p., °C	Yield,		
		с	н	И	s	ļ	%
Ia	C14H12N4OS	<u>58,98</u> 59,14	<u>4,31</u> 4,25	<u>19,64</u> 19,70	<u>11,04</u> 11,28	189190	81
Ib	C17H12N4S	<u>66,87</u> 67,08	<u>4,08</u> 3,97	<u>18,47</u> 18,41	<u>10,47</u> 10,53	159161	75
Ic	C13H9CIN4S	<u>53,97</u> 54,07	<u>3,05</u> 3,14	<u>19,33</u> 19,40	<u>11,06</u> 11,10	171172	67
Id	C13H9IN4S	$\frac{41,02}{41,07}$	<u>2,36</u> 2,39	<u>14,77</u> 14,74	<u>8,39</u> 8,43	165167	70
Ie	C14H12N4S	<u>62,61</u> 62,66	<u>4,45</u> 4,51	<u>20,85</u> 20,88	<u>11,88</u> 11, 95	170171	84


TABLE 1. Elemental Analysis Results for 4-Aryl-2,6-diamino-3,5-dicyano-4H-thiopyranes (Ia-e)

*Deceased.

T. G. Shevchenko Lugansk State Pedagogical Institute, Lugansk 348011. N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 909-914, July, 1997. Original article submitted July 16, 1996; revision submitted December 23, 1996.

When 6-amino-4-(2-methoxyphenyl)-3,5-dicyano-3,4-dihydropyridine-2(1H)-thione (Va) is boiled in glacial acetic acid, it is converted into the corresponding dehydrogenated analog, the thione IX, which is oxidized by iodine in basic media to the corresponding disulfide X and is alkylated by 4-chlorophenacyl bromide to form the sulfide (XI). The salt IVc reacted with iodine in ethanol to give the corresponding bis[6-amino-3,5-dicyano-4-(2-chlorophenyl)-1,4-dihydro-2-pyridinyl)]disulfide (XII).

The IR spectra of compounds IV, V, VII-XII contain bands characteristic of conjugated cyano groups at 2175-2220 cm⁻¹. Bands corresponding to the amino groups are observed in the 3200-3450 cm⁻¹ region (Table 4). Characteristic signals in the ¹H NMR spectra of the substituted dihydropyridines IV, VII, and XII are the broad singlet of the NH proton at 9.01-9.40 ppm, the singlet for the C₍₄₎-H proton at 4.60-4.87 ppm, and the broad singlet of the protons of the conjugated amino group at 5.41-5.92 ppm (Table 4), which is particularly indicative of such systems [1].

I-III, V a Ar = 2-CH₃OC₆H₄, b Ar = 1-naphthyl, c Ar = 2-ClC₆H₄, dAr = 2-IC₆H₄, e Ar = 2-CH₃C₆H₄. IV a Ar = 2-CH₃OC₆H₄, B = N- methylmorpholine b Ar = 1-naphthyl, B =morpholine c Ar = 2-ClC₆H₄, B = N- methylmorpholine; d Ar = 2-IC₆H₄, B = N- methylmorpholine c Ar = 2-CH₃C₆H₄, B = N- methylmorpholine

VI a Hal – I, Z – H; b Hal – Br, Z – CH–CH2; c Hal – Cl, Z – CN; d Hal – Br, Z – 4-CH3C6H4CO; e Hal – Br, Z – PhCO; f Hal – Cl, Z – 4-BrC6H4NHCO; g Hal – Cl, Z – COOC2H5; h Hal – Br, Z – 4-BrC6H4CO; µ Hal – Br, Z = 2,4-(CH3)2C6H3CO. VII, VIII a R – CH3, Z – 4-BrC6H4NHCO; b R – CH3, Z – H; c R – CH3, Z – COOC2H5; d R – CH3O, Z – CH–CH2; e R – Cl, Z – CN; f R – Cl, Z – H; g R – Cl, Z – 4-CH3C6H4CO; h R – Cl, Z – PhCO; i R – CH3, Z – 4-BrC6H4CO; j R – CH3, Z – PhCO; k R – Cl, Z – 2,4-(CH3)2C6H3CO

Com- pound	IR spectra, v	¹ H NMR spectra, δ , ppm			
	NH2	CN	NH2, S	C ₍₄₎ H, S	Ar, m
Ia	3204, 3320, 3399	2185	6,81	4,58	6,907,35, 3,74 s
Ib	3180, 3315, 3422	2172, 2190	6,91	5,21	7,50, 7,91, 8,37
Ic	3300, 3395	2190	6,96	4,82	7,40
Id	3185, 3300, 3422	2175 pl	6,94	4,71	7,36, 7,83 d
Ie	3300, 3420	2200	6,83	4,60	7,16, 2,39 s

TABLE 2. IR and ¹H NMR Spectra of 4-Aryl-2,6,diamino-3,5-dicyano-4H-thiopyranes (Ia-e)

EXPERIMENTAL

IR spectra of Nujol mulls were recorded on an IKS-29 spectrometer. ¹H NMR spectra of DMSO-D₆ solutions with TMS as internal standard were recorded on a Bruker WP-100 SU (100 MHz) instrument. The course of reactions and the purity of products were monitored by TLC on Silufol UV-254 strips with acetone-hexane (3:5) as eluant.

4-Aryl-2,6-diamino-3,5-dicyano-4H-thiopyranes (Ia-e) were obtained by a known method [4]. Their characteristics are cited in Tables 1 and 2.

N-Methylmorpholinium 6-Amino-4-aryl-3,5-dicyano-1,4-dihydropyridin-2-thiolates (IVa-e). A suspension of thiopyrane Ia-e (10 mmol) in absolute ethanol (20 cm³) in the presence of the organic base (10 mmol) was boiled for 15 min. The precipitate which formed on cooling the reaction mixture was separated and washed with absolute ethanol and acetone.

N-Methylmorpholinium 6-Amino-4-(2-methoxyphenyl)-3,5-dicyano-1,4-dihydropyridin-2-thiolate (IVa). Yield 77%. M.p. 165-167°C. IR spectrum: 1648 (NH₂), 2170, 2192 (CN), 3210, 3300, 3422 cm⁻¹ (NH, NH₂).¹H NMR spectrum: 2.75(3 H, s, NCH₃), 3.14 (4 H, m, CH₂NCH₂), 3.73 (3 H, s, OCH₃), 3.80 (4 H, m, CH₂OCH₂), 4.48 (1 H, s, C₍₄₎H), 5.45 (2 H, br. s, NH₂), 6.80-7.20 (4 H, m, Ar), 7.90 ppm (1 H, br. s, NH). Found, %: C 59.11, H 5.88, N 17.99, S 8.45. Calc. for $C_{19}H_{23}N_5O_2S$, %: C 59.20, H 6.01, N 18.17, S 8.32.

Morpholinium 6-Amino-4-(1-naphthyl)-3,5-dicyano-1,4-dihydropyridin-2-thiolate (IVb). Yield 80%. M.p. 188-89°C. IR spectrum: 1600 (NH₂), 2190 (CN), 3225, 3320, 3360 cm⁻¹ (NH, NH₂). ¹H NMR spectrum: 3.07 (4 H, m, CH₂NCH₂), 3.71 (4 H, m, CH₂OCH₂), 4.82 (1 H, s, C₍₄₎), 5.53 (2 H, br. s, NH₂), 7.46-8.50 ppm (8 H, m, naphthyl and NH). Found, %: C 64.60, H 5.50, N 17.76, S 8.02. Calc. for $C_{21}H_{21}N_5OS$, %: C 64.43, H 5.41, N 17.89, S 8.19.

The pyridinethiolates IVc and IVd were identical to those described previously [1]. Yield of IVc 72%, m.p. 183-184°C. For IVd, 80%, 165-166°C.

N-Methylmorpholinium 6-amino-4-(2-methylphenyl)-3,5-dicyano-1,4-dihydropyridin-2-thiolate (IVe). Yield 86%. M.p. 157-60°C. IR spectrum: 1660 (NH₂), 2188 (br., CN), 3305, 3422 cm⁻¹ (NH, NH₂).¹H NMR spectrum: 2.31 (3 H, s, CH₃), 2.77 (3 H, s, NCH₃), 3.16 (4 H, m, CH₂NCH₂), 3.76 (4 H, m, CH₂OCH₂), 4.31 (1 H, s, C₍₄₎H), 5.47 (2 H, br. s, NH₂), 7.0-7.2 (4 H, m, Ar), 7.92 ppm (1 H, br. s, NH). Found, %: C 61.65, H 6.12, N 19.12, S 8.72. Calc. for $C_{19}H_{23}N_5OS$, %: C 61.76, H 6.27, N 18.95, S 8.68.

6-Amino-4-aryl-,3,5-dicyano-3,4-dihydro-pyridin-2(1H)-thiones (Va-d). A suspension of the salt IVa-d (10 mmol) in ethanol (10 cm³) was diluted with 10% aqueous hydrochloric acid to pH 4. The solution, which became transparent, was kept for 24 h at 20°C. The precipitate which formed was filtered off and washed with ethanol and hexane.

6-Amino-4-(2-methoxyphenyl)-,3,5-dicyano-3,4-dihydro-pyridin-2(1H)-thione (Va). Yield 63%. M.p. 230-232°C (methanol). IR spectrum: 1715 (NH₂), 2207, 2258 (CN), 3360-3400 cm⁻¹ (NH, NH₂). ¹H NMR spectrum: 3.65 (3 H, s, CH₃), 4.82 (1 H, d, C₍₃₎H, ³J = 8 Hz), 5.31 (1 H, d, C₍₄₎H, ³J = 8 Hz), 6.9-7.7 ppm (4 H, m, Ar). Found, %: C 58.95, H 4.33, N 19.54, S 11.39. Calc. for C₁₄H₁₂N₄OS, %: C 59.14, H 4.25, N 19.70, S 11.28.

6-Amino-4-(1-naphthyl)-,3,5-dicyano-3,4-dihydro-pyridin-2(1H)-thione (Vb). Yield 65%. M.p. 255-257°C (ethanol). IR spectrum: 1710 (NH₂), 2200 (CN), 3215, 3370 cm⁻¹ (NH, NH₂). ¹H NMR spectrum: 5.43 (1 H, d, C₍₃₎H, ³J = 7 Hz), 5.81 (1 H, d, C₍₄₎H, ³J = 7 Hz), 7.07-8.54 (9 H, m, naphthyl and NH₂), 11.63 ppm (1 H, s, NH). Found, %: C 66.82, H 3.81, N 18.50, S 10.87. Calc. for $C_{17}H_{12}N_4S$, %: C 67.09, H 3.97, N 18.41, S 10.53.

The pyridinethiones Vc and Vd were analogous to those described previously [1]. Yield of Vc 66%, m.p. 270-272°C (ethanol), for Vd 77%, m.p. 278-280°C (ethanol).

Com-	Molecular formula		(Found (Calculation)	M.p., °C (recrystal-	Yield,		
pound		с	Н	N	s	lization solvent)	%
VIIa	C22H18BrN5OS	<u>55,19</u> 55,01	<u>3,85</u> 3,78	<u>14,41</u> 14,58	<u>6,50</u> 6,67	220222 (ethanol)	89 (B)
VIIb	C15H14N4S	<u>63,71</u> 63,80	<u>4,85</u> 5,00	<u>19,99</u> 19,84	<u>11,45</u> 11,36	175177 (ethanol)	70 (B)
VIIc	C18H18N4O2S	<u>60,95</u> 61,00	5,08 5,12	<u>15,77</u> 15,81	<u>9,01</u> 9,05	145147 (ethanol)	79 (B)
VIId	C17H16N4OS	<u>62,89</u> 62,94	<u>4,92</u> 4,97	<u>17,24</u> 17,27	<u>9,80</u> 9,88	(benzene)	66 (A) 72 (B)
VIIe	C15H10CIN5S	<u>55,15</u> 54,96	<u>3,20</u> 3,08	$\frac{21,21}{21,37}$	<u>9,66</u> 9,78	194196 (methanol)	80 (A) 82 (B)
VIIf	C14H11CIN4S	<u>55,49</u> 55,54	<u>3,52</u> 3,66	<u>18,70</u> 18,50	<u>10,62</u> 10,59	162163 (methanol)	77 (A) 79 (B)
VIIg	C22H17CIN4OS	<u>62,81</u> 62,78	<u>3,90</u> 4,07	<u>13,08</u> 13,31	7,80 7,62	193195 (methanol)	90 (A) 88 (B)
VIIh	C21H15CIN4OS	$\frac{62,12}{61,99}$	$\frac{3,81}{3,72}$	<u>13,59</u> 13,77	7,70 7,88	160162 (methanol)	73 (A) 77 (B)
VII i	C22H17BrN4OS	<u>56,60</u> 56,78	<u>3,59</u> 3,68	<u>12,20</u> 12,04	<u>6,78</u> 6,89	201203 (ethanol)	78 (B)
VIIj	C22H18N4OS	$\frac{68,33}{68,37}$	<u>4,65</u> 4,69	<u>14,45</u> 14,50	<u>8,25</u> 8,30	195197 (ethanol)	77 (B)
VIIIh	C21H13CIN4OS	<u>62,25</u> 62,30	<u>3,20</u> 3,24	<u>13,79</u> 13,84	<u>7,90</u> 7,92	350352 (AcOH)	75 (A) 64 (B)
VШі	C22H15BrN4OS	<u>56,84</u> 57,03	$\frac{3,11}{3,26}$	<u>12,22</u> 12,09	<u>7,08</u> 6,92	300(decomp.) (AcOH)	66 (A)
VIIII	C22H16N4OS	<u>68,68</u> 68,73	$\frac{4,14}{4,19}$	<u>14,53</u> 14,57	<u>8,31</u> 8,34	330(decomp.) (AcOH)	65 (A)
VIIIm	C23H17CIN4OS	63,78 63,81	<u>3,90</u> 3,96	<u>12,91</u> 12,94	<u>7,38</u> 7,41	293295 (1-butanol)	61 (B)
XI	C22H15CIN4O2S	<u>60,88</u> 60,76	<u>3,30</u> 3,48	<u>12,95</u> 12,88	<u>7,21</u> 7,37	221222 (AcOH)	78 (A)

TABLE 3. Elemental Analysis Results for Substituted 2-Z-Methylthio-1,4dihydropyridines (IVa-j), Thieno[2,3-b]pyridines (VIIIh-k) and 6-Amino-3,5-dicyano-4(-2-methoxyphenyl)-2-(4-chlorobenzoylmethylthio)pyridine (XI)

6-Amino-4-aryl-3,5-dicyano-2-Z-methylthio-1,4-dihydropyridines (VIIa-j). A. To a solution of thione Va or Vc (10 mmol) in DMF (10 cm³) an aqueous 10% KOH solution was added with stirring followed by addition of an alkyl halide (VIa-e, 10 mmol) in 1 min. The reaction mixture was stirred for 2 h and then diluted with water (15 cm³). The precipitate was filtered off, and washed successively with water, ethanol and hexane to give compounds VIId-h (Tables 3 and 4).

B. An alkyl halide (VIa-h, 10 mmol) was added with stirring to a suspension of salt IVa, c or e (10 mmol) in ethanol (10 cm³), the mixture was stirred for 1.5 h and then diluted with water (15 cm³). The precipitate formed was isolated and washed successively with water, ethanol and hexane to give compounds VIIa-j (Tables 3 and 4).

4-Aryl-3,6-diamino-5-cyano-2-Z-thieno[2,2-b]pyridines (VIIIh-k). A. A 10% aqueous KOH solution (5.6 cm³, 10 mmol) was added with stirring to a solution of a substituted 2-alkylthio-1,4-dihydropyridine (VIIh-j, 10 mmol) in DMF (15 cm³). After stirring for 4 h, the solution was diluted with water (15 cm³). The precipitate formed was isolated and washed successively with water, ethanol and hexane to give compounds VIIIh-j (Tables 3 and 4)

B. A 10% aqueous KOH solution (5.6 cm³, 10 mmol) was added with stirring to a solution of thione Vc (2.89 g, 10 mmol) in DMF (15 cm³). An alkyl halide (VIe or VIi, 10 mmol) was added after 1 min. More 10% aqueous KOH solution (5.6 cm³) was added over 30 min to the reaction mixture, which was stirred for a further 4 h and then diluted with water (15 cm³). The precipitate formed was isolated and washed successively with water, ethanol and hexane to give compounds VIIIh and k (Tables 3 and 4).

6-Amino-3,5-dicyano-4-(2-methoxyphenyl)pyridin-2(1H)-thione (IX). A suspension of compound Va (2.84 g, 10 mmol) in glacial acetic acid (10 cm³) was heated to boiling and filtered hot. The precipitate which formed on cooling the mixture was separated and washed with glacial acetic acid and ether to give the thione IX, 2.03 g (72%). M.p. 238-240°C (AcOH). IR spectrum: 1650 (NH₂), 2220 (CN), 3200, 3304, 3408 cm⁻¹ (NH₂). ¹H NMR spectrum: 3.81 (3 H, s, CH₃), 7.0-7.6 (4 H, m, Ar), 7.93 ppm (2 H, br.s, NH₂). Found %: C 59.44, H 3.69, N 19.76, S 11.49. Calc. for C₁₄H₁₀N₄OS, %: C 59.56, H 3.57, N 19.85, S 11.36.

							·		
_	IR spectra, ν , cm ⁻¹		¹ H NMR spectra, δ, ppm						
Com- pound	NH, NH2	CN	NH2, S	NH, S	Ar, m	C ₍₄₎ H, S	SCH ₂ , S, C ₍₃₎ —NH ₂ . br.s.	Z	
VIIa	3210, 3300, 2420	2190, 2218	5,92	9,40	7,14 m, 2,34 s	4,61	3,91	10,43 s, 7,54 m	
VII b	31503415	2175, 2220	5,91	9,01	7,17 m, 2,35 s	4,61	2,50	_	
VIIc	3195, 3308, 3444	2220	5,85	9,25	7,17 m, 2,36 s	4,63	3,87	4,11 q 1,19 t	
V∏d	3160, 3320, 3435	2190	5,83*	9,13	7,02, 3,74*	4,59	*	*	
V∏e	3250, 3372	2170, 2195	8,41	9,95	7,40	4,87	4,22	-	
VIIf	3200, 3332, 3395	2190 pl.	6,04	9,12	7,35	4,81	2,51		
V∏g	3225, 3384, 3442	2192 pl. 2220 pl.	5,97	9,31	7,36	5,01	4,72	7,91 m, 2,40 s	
VIIh	3322, 3440	2180 pl.	5,98	9,28	7,38	4,80	4,60	7,60 m, 8,02 m	
VIIi	33003424	2192 pl.	5,83	9,20	7,17 m, 2,34 s	4,63	4,69	7,45 d, 7,78 d	
VIIj	33003422	2195 pl.	5,85	9,19	7,62 m, 2,33 s	4,60	4,73	7,16 m	
VIIIh	3205, 3304, 3422	2220	7,64*	-	*	-	6,61	*	
VIII i	3300. 3400	2218	7,50*	-	*, 2,11	-	6,53	7,65 m	
VIIIj	3333, 3412	2200 pl.	7,52*	-	*. 2,13 s	-	6,54	7,70 m	
VⅢk	3150, 3268, 3470	2220	7,71*	_	*	-	6,48	7,26 d, 7,10 m, 2,31 s, 2,22 s	
XI	3222, 3314, 3398	2220	7,64	-	7,007,55 m, 3,81 s	-	4,96	8,08 d, 7,65 d	

TABLE 4. IR and ¹H NMR Spectra of Substituted 2-Z-Methylthio-1,4-dihydropyridines (VIIa-j), Thieno[2,3-b]pyridines (VIIIh-k) and 6-Amino-3,5-dicyano-4(-2methoxyphenyl)-2-(4-chlorobenzoylmethylthio)pyridine (XI)

*Signals overlapped.

Bis[(6-amino-3,5-dicyano-4-(2-methoxyphenyl)-2-pyridinyl) Disulfide (X). A 10% aqueous KOH solution (1.28 cm³, 2.28 mmol) was added to a stirred suspension of thione IX (0.64 g, 2.28 mmol) in ethanol (10 cm³), followed by dropwise addition of iodine (0.58 g, 2.28 mmol) in ethanol (15 cm³). After 1 h, water was added (10 cm³) and the precipitate was isolated to give compound X (0.58 g, 91%). M.p. 154-156°C (ethanol). IR spectrum: 1652 (NH₂), 2170, 2218 (CN), 3333, 3425 cm⁻¹ (NH₂). ¹H NMR spectrum: 3.86 (6 H, s, 2CH₃), 7.0-7.7 (8 H, m, 2Ar), 7.93 ppm (4 H, br.s, NH₂). Found, %: C 59.88, H 3.40, N 19.80, S 11.25. Calc. for $C_{28}H_{18}N_8O_2S_2$, %: C 59.77, H 3.23, N 19.92, S 11.40

6-Amino-,3,5-dicyano-4-(2-methoxyphenyl)-2-(4-chlorobenzoylmethylthio)pyridine (XI) was prepared analogously to that for compound VII by method A. Its characteristics are cited in Tables 3 and 4.

Bis[(6-amino-3,5-dicyano-4-(2-chlorophenyl)-1,4-dihydro-2-pyridyl)] Disulfide (XII). A solution of iodine (0.56 g, 2.28 mmol) in ethanol (15 cm³) was added dropwise with stirring to a suspension of salt IVc (0.89 g, 2.28 mmol) in ethanol (10 cm³). After 1 h, the mixture was diluted with water (10 cm³) and the precipitate isolated to give disulfide XII (0.49 g, 74%). M.p. 165-166°C (ethanol). IR spectrum: 1635 (NH₂), 2180 (br, CN), 3200, 3330, 3414 cm⁻¹ (NH₂). ¹H NMR spec-

trum: 4.91 (2 H, br.s, $2C_{(4)}H$), 5.99 (4 H, br.s, $2NH_2$), 7.45 (8 H, m, 2Ar), 9.67 ppm (2 H, br.s, 2NH). Found %, C 54.12, H 2.88, Cl 12.15, N 19.65, S 11.20. Calc. for $C_{26}H_{16}Cl_2N_8S_2$, %: C 54.26, H 2.80, Cl 12.32, N 19.47, S 11.14.

This work was supported by a grant from the Russian Fund for Fundamental Research (project # 96-03-32012a).

REFERENCES

- 1. Yu. A. Sharanin, S. G. Krivokolysko, and V. D. Dyachenko, Zh. Org. Khim., 30, 581 (1994).
- V. P. Litvinov, V. K. Promonenkov, Yu. A. Sharanin, and A. M. Shestopalov, Itogi Nauki I Tekhniki. Org. Khimiya, Vol. 17, VINITI, Moscow (1989), p. 72.
- 3. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, Sulfur Reports, 13, 1 (1992).
- Yu. A. Sharinin, A. M. Shestopalov, V. N. Nesterov, S. N. Melenchuk, V. K. Promonenkov, V. E. Shklover, Yu. T. Struchkov, and V. P. Litvnov, Zh. Org. Khim., 25, 1323 (1989).